Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add filters

Language
Document Type
Year range
1.
biorxiv; 2021.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2021.12.11.472236

ABSTRACT

The devastation caused by SARS-CoV-2 has made clear the importance of pandemic preparedness. To address future zoonotic outbreaks due to related viruses in the sarbecovirus subgenus, we identified a human monoclonal antibody, 10-40, that neutralized or bound all sarbecoviruses tested in vitro and protected against SARS-CoV-2 and SARS-CoV in vivo. Comparative studies with other receptor-binding domain (RBD)-directed antibodies showed 10-40 to have the greatest breadth against sarbecoviruses and thus its promise as an agent for pandemic preparedness. Moreover, structural analyses on 10-40 and similar antibodies not only defined an epitope cluster in the inner face of the RBD that is well conserved among sarbecoviruses, but also uncovered a new antibody class with a common CDRH3 motif. Our analyses also suggested that elicitation of this class of antibodies may not be overly difficult, an observation that bodes well for the development of a pan-sarbecovirus vaccine.


Subject(s)
Severe Acute Respiratory Syndrome
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-923755.v1

ABSTRACT

Robust severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in nasal turbinate (NT) accounts for high viral transmissibility, yet whether neutralizing IgA antibodies can control it remains unknown. Here, we evaluated receptor binding domain (RBD)-specific monomeric B8-mIgA1 and B8-mIgA2, and dimeric B8-dIgA1 and B8-dIgA2 against intranasal SARS-CoV-2 challenge in Syrian hamsters. These antibodies exhibited comparably potent neutralization against authentic virus by competing with human angiotensin converting enzyme-2 (ACE2) receptor for RBD binding. While reducing viruses in lungs, pre-exposure intranasal B8-dIgA1 or B8-dIgA2 led to 81-fold more infectious viruses and severer damage in NT than placebo. Virus-bound B8-dIgA1 and B8-dIgA2 could engage CD209 as an alternative receptor for entry into ACE2-negative cells and allowed viral cell-to-cell transmission. Cryo-EM revealed B8 as a class II neutralizing antibody binding trimeric RBDs in 3-up or 2-up/1-down conformation. Therefore, RBD-specific neutralizing dIgA engages an unexpected action for enhanced SARS-CoV-2 nasal infection and injury in Syrian hamsters.


Subject(s)
Severe Acute Respiratory Syndrome
3.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-902819.v1

ABSTRACT

Extrapulmonary complications of different organ systems have been increasingly recognized in patients with severe or chronic Coronavirus Disease 2019 (COVID-19). However, limited information on the skeletal complications of COVID-19 is known, even though inflammatory diseases of the respiratory tract have been known to perturb bone metabolism and cause pathological bone loss. In this study, we characterized the effects of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on bone metabolism in an established golden Syrian hamster model for COVID-19. SARS-CoV-2 causes significant multifocal loss of bone trabeculae in the long bones and lumbar vertebrae of all infected hamsters. The bone loss progressively worsens from the acute phase to the post-recovery phase. Mechanistically, the bone loss was associated with SARS-CoV-2-induced cytokine dysregulation which upregulates osteoclastic differentiation of monocyte-macrophage lineage. The pro-inflammatory cytokines further trigger a second wave of cytokine storm in the skeletal tissues to augment their pro-osteoclastogenesis effect. Our findings in this established hamster model suggest that pathological bone loss may be a neglected complication which warrants more extensive investigations during the long-term follow-up of COVID-19 patients. The benefits of potential prophylactic and therapeutic interventions against pathological bone loss should be further evaluated.


Subject(s)
COVID-19
4.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-676992.v1

ABSTRACT

Mice are not susceptible to wildtype SARS-CoV-2 infection. Emerging SARS-CoV-2 variants including B.1.1.7, B.1.351, P.1, and P.3 contain mutations in spike, which have been suggested to associate with an increased recognition of mouse ACE2, raising the postulation that they may have evolved to expand species tropism to rodents. Here, we investigated the capacity of B.1.1.7 and other emerging SARS-CoV-2 variants in infecting mouse (Mus musculus) and rats (Rattus norvegicus) under in vitro and in vivo settings. Our results show that B.1.1.7 and P.3, but not B.1 or wildtype SARS-CoV-2, can utilize mouse and rat ACE2 for virus entry in vitro. High infectious virus titers, abundant viral antigen expression, and pathological changes are detected in the nasal turbinate and lung of B.1.1.7-inocluated mice and rats. Together, these results reveal that the current predominant circulating SARS-CoV-2 variant, B.1.1.7, has gained the capability to expand species tropism to rodents.


Subject(s)
COVID-19
5.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-516695.v1

ABSTRACT

Coronaviruses have repeatedly crossed species barriers to cause epidemics1. “Pan-coronavirus” antivirals targeting conserved viral components involved in coronavirus replication, such as the extensively glycosylated spike protein, can be designed. Here we show that the rationally engineered H84T-banana lectin (H84T-BanLec), which specifically recognizes high-mannose found on viral proteins but seldom on healthy human cells2, potently inhibits the highly virulent MERS-CoV, pandemic SARS-CoV-2 and its variants, and other human-pathogenic coronaviruses at nanomolar concentrations. MERS-CoV-infected human DPP4-transgenic mice treated by H84T-BanLec have significantly higher survival, lower viral burden, and reduced pulmonary damage. Similarly, prophylactic or therapeutic H84T-BanLec is effective against SARS-CoV-2 in hamsters. Importantly, intranasally and intraperitoneally administered H84T-BanLec are comparably effective. Time-of-drug-addition assay shows that H84T-BanLec targets virus entry. Real-time structural analysis with high-speed atomic force microscopy depicts multi-molecular associations of H84T-BanLec dimers with the SARS-CoV-2 spike trimer. Single-molecule force spectroscopy demonstrates binding of H84T-BanLec to multiple SARS-CoV-2 spike mannose sites with high affinity, and that H84T-BanLec competes with SARS-CoV-2 spike for binding to cellular ACE2. Modelling experiments identify distinct high-mannose glycans in spike recognized by H84T-BanLec. The multiple H84T-BanLec binding sites on spike likely account for the activity against SARS-CoV-2 variants and the lack of resistant mutants. The broad-spectrum H84T-BanLec should be clinically evaluated in respiratory viral infections including COVID-19.


Subject(s)
COVID-19
6.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-354943.v1

ABSTRACT

Highly pathogenic coronaviruses including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)1,2, Middle East respiratory syndrome coronavirus (MERS-CoV)3,4, and SARS-CoV-15 vary in their transmissibility and pathogenicity. However, infection by all three viruses result in substantial apoptosis in cell culture6-8 and in patient samples9-11, suggesting a potential link between apoptosis and the pathogenesis of coronaviruses. To date, the underlying mechanism of how apoptosis modulates coronavirus pathogenesis is unknown. Here we show that a cysteine-aspartic protease of the apoptosis cascade, caspase-6, serves as an essential host factor for efficient coronavirus replication. We demonstrate that caspase-6 cleaves coronavirus nucleocapsid (N) proteins, generating N fragments that serve as interferon (IFN) antagonists, thus facilitating virus replication. Inhibition of caspase-6 substantially attenuates the lung pathology and body weight loss of SARS-CoV-2-infected golden Syrian hamsters and improves the survival of mouse-adapted MERS-CoV (MERS-CoVMA)-infected human DPP4 knock-in (hDPP4 KI) mice. Overall, our study reveals how coronaviruses exploit a component of the host apoptosis cascade to facilitate their replication. These results further suggest caspase-6 as a potential target of intervention for the treatment of highly pathogenic coronavirus infections including COVID-19 and MERS.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Weight Loss , COVID-19
7.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-87868.v1

ABSTRACT

So far, effective antivirals have not been widely available for treating COVID-19. In this study, we identify a dual-functional cross-linking peptide 8P9R which can inhibit the two entry pathways (endocytic pathway and TMPRSS2-mediated surface pathway) of SARS-CoV-2 in cells. The endosomal acidification inhibitors (8P9R and chloroquine) can synergistically enhance the activity of arbidol, a spike-ACE2 fusion inhibitor, against SARS-CoV-2 and SARS-CoV in cells. In vivo studies indicate that 8P9R or the combination of repurposed drugs (arbidol, chloroquine and camostat which is a TMPRSS2 inhibitor), simultaneously interfering with the two entry pathways of coronavirus, can significantly suppress SARS-CoV-2 replication in hamsters and SARS-CoV in mice. Here, we use drug combination (arbidol, chloroquine, and camostat) and a dual-functional 8P9R to demonstrate that blocking the two entry pathways of coronavirus can be a promising and achievable approach for inhibiting SARS-CoV-2 replication in vivo. Cocktail therapy of these drug combinations should be considered in treatment trials for COVID-19.


Subject(s)
COVID-19 , Severe Acute Respiratory Syndrome
8.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-86169.v1

ABSTRACT

COVID-19 pandemic is the third zoonotic coronavirus (CoV) outbreak of the century after severe acute respiratory syndrome (SARS) in 2003 and Middle East respiratory syndrome (MERS) since 2012. Treatment options for CoVs are largely lacking. Here, we show that clofazimine, an anti-leprosy drug with a favorable safety and pharmacokinetics profile, possesses pan-coronaviral inhibitory activity, and can antagonize SARS-CoV-2 replication in multiple in vitro systems, including the human embryonic stem cell-derived cardiomyocytes and ex vivo lung cultures. The FDA-approved molecule was found to inhibit multiple steps of viral replication, suggesting multiple underlying antiviral mechanisms. In a hamster model of SARS-CoV-2 pathogenesis, prophylactic or therapeutic administration of clofazimine significantly reduced viral load in the lung and fecal viral shedding, and also prevented cytokine storm associated with viral infection. Additionally, clofazimine exhibited synergy when administered with remdesivir. Since clofazimine is orally bioavailable and has a comparatively low manufacturing cost, it is an attractive clinical candidate for outpatient treatment and remdesivir-based combinatorial therapy for hospitalized COVID-19 patients, particularly in developing countries. Taken together, our data provide evidence that clofazimine may have a role in the control of the current pandemic SARS-CoV-2, endemic MERS-CoV in the Middle East, and, possibly most importantly, emerging CoVs of the future.


Subject(s)
Coronavirus Infections , Severe Acute Respiratory Syndrome , Leprosy , Virus Diseases , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL